Carsevolution.ru

КАРС Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автоматическая регулировка усиления

Автоматическая регулировка усиления

Автоматическая регулировка усиления, АРУ (англ. automatic gain control , AGC ) — процесс, при котором выходной сигнал некоторого устройства, как правило электронного усилителя, автоматически поддерживается постоянным по некоторому параметру (например, амплитуде простого сигнала или мощности сложного сигнала), независимо от амплитуды (мощности) входного сигнала. В аппаратуре, использующейся для прослушивания радиовещательного эфира, АРУ также называют устарелым термином автоматическая регулировка громкости (АРГ), а в приёмниках проводной связи — автоматической регулировкой уровня. В импульсных приёмниках (радиолокационных и других) применяют АРУ, учитывающие особенности работы в импульсном режиме.

АРУ применяется для исключения перегрузки выходных каскадов приёмников при больших входных сигналах. Используется в бытовой аппаратуре, в приёмниках спутников связи и т. д. Также, существует ручная регулировка усиления (РРУ), выполняется на пассивных или активных (электронных) радиоэлементах или с помощью аттенюаторов. [1]

В 1925 Гарольд Олден Уилер изобрел автоматическую регулировку громкости (АРГ) и получил патент. Карл Кюпфмюллер [en] издал анализ систем АРУ в 1928. [2] К началу 1930-х все бытовые радиоприемники включали автоматическую регулировку громкости. [3]

Существует три типа АРУ: простая, усиленно-задержанная и просто задержанная. Или по типу сигнала схемы АРУ бывают двух типов:

Также, если искажения сигнала не важны, применяют схему ограничителя.

Напряжение сигналов, поступающих на вход приёмника, как правило значительно меняется: из-за различия передаваемой мощности передатчиков и расстояний их от места приёма, замираний сигналов при распространении, резкого изменения расстояний и условий приёма между передатчиком и приёмником, установленными на движущихся объектах (самолётах, автомобилях и т. д.), и других причин. Это приводит к недопустимым колебаниям или искажениям сигналов в приёмнике. Система АРУ стремится минимизировать различия напряжения выходного и входного сигнала приёмника. Это осуществляется посредством цепей, которые передают выпрямленное детектором регулирующее напряжение на базы транзисторов, усилителей высокой, промежуточной частоты и преобразователя частоты, которые уменьшают их усиление с увеличением напряжения сигнала на входе и наоборот: происходит компенсация в приёмнике изменений напряжения входных сигналов. Основные параметры систем АРУ:

  • Динамический диапазон (дБ) — это глубина изменения входного сигнала (разница между минимальным и максимальным сигналом), при котором ещё выходной сигнал находится в допустимых пределах;
  • Время срабатывания АРУ (дБ/с) — отражает скорость реакции АРУ на скачок входного сигнала. Данный параметр равен бесконечности (нулевое время срабатывания) для ограничителя сигнала.

Важным свойством системы АРУ является наличие выхода, показывающего уровень входного сигнала (невозможно сделать для ограничителя).

Обратная

Эта схема получила такое название, из-за того, что управляющее напряжение (Uупр) подается со стороны выхода в направлении входа РУ. Пропорционально уровню входного сигнала обеспечивается управляющее напряжение, благодаря коэффициенту передачи КД детектора АРУ (ДЕТ): Uупр = КД ⋅ Купр ⋅ Uвых. Фильтр АРУ (ФНЧ) отфильтровывает составляющие частот модуляции и пропускает медленно меняющиеся составляющие напряжения Uупр. Цепь АРУ называется простой, если она состоит только из детектора и фильтра. В цепь АРУ может включаться усилитель, устанавливаемый после детектора (УПТ).

Прямая

Входное напряжение Uвх детектируется, и за счёт этого формируется управляющее напряжение Uупр. Выходное напряжение получается путём умножения Uвх на коэффициент усиления Ko. Таким образом, при увеличении Uвх уменьшается Ko; при этом их произведение может оставаться постоянным, что позволяет реализовать идеальную характеристику АРУ, но практически добиться этого не удается. Прямая схема АРУ имеет некоторые существенные недостатки, один из которых состоит в необходимости включать перед детектором в цепи АРУ дополнительный высокочастотный (ВЧ) усилитель с большим коэффициентом усиления, прямая АРУ также нестабильна, то есть подвержена воздействию различных дестабилизирующих факторов. В связи с этим она нашла ограниченное применение.

Пассивная

Пассивные АРУ-устройства, не потребляющие электрическую энергию, то есть не имеющие в своём составе источников тока. Как правило, такие пассивные АРУ выполняются в виде аттенюаторов, каждый из резисторов которого представляет собой термосопротивление (термисторы). С повышением температуры сопротивление увеличивается, что вызывает уменьшение вносимого ослабления аттенюатором. И, наоборот, при понижении температуры окружающей среды ослабление аттенюатора увеличивается.

АРУЗавтоматическая регулировка уровня записи в устройствах магнитной звукозаписи.

В общем случае АРУЗ выравнивает амплитуду звукового сигнала для записи равномерного и качественного звука.

Автоматическая регулировка уровня записи применяется в съемочной технике и других устройствах магнитной звукозаписи, используемой в видеопроизводстве для предотвращения проблем ручной регулировки уровня записи звука. При ручной регулировке уровня записи звука необходимо постоянно следить за индикатором звука и устанавливать приемлемый уровень записи звука согласно уровню принимаемого звукового сигнала. Это отвлекает от работы с визуальным содержанием кадра. При этом даже при постоянном слежении за индикатором записи звука избежать кратковременных перегрузов или, наоборот, потери звуковой информации не удаётся. Ручное регулирование уровня записи трубет временных затрат, что негативно сказывается на результатах работы.

Читайте так же:
Регулировка клапанов на митсубиси асх 1 8 вариатор

Напряжение сигналов, поступающих на вход приёмника, как правило значительно меняется: из-за различия передаваемой мощности передатчиков и расстояний их от места приёма, замираний сигналов при распространении, резкого изменения расстояний и условий приёма между передатчиком и приёмником, установленными на движущихся объектах (самолётах, автомобилях и т. д.), и других причин. Это приводит к недопустимым колебаниям или искажениям сигналов в приёмнике. Система АРУ стремится минимизировать различия напряжения выходного и входного сигнала приёмника. Это осуществляется посредством цепей, которые передают выпрямленное детектором регулирующее напряжение на базы транзисторов, усилителей высокой, промежуточной частоты и преобразователя частоты, которые уменьшают их усиление с увеличением напряжения сигнала на входе и наоборот: происходит компенсация в приёмнике изменений напряжения входных сигналов. Основные параметры систем АРУ:

  • Динамический диапазон (дБ) — это глубина изменения входного сигнала (разница между минимальным и максимальным сигналом), при котором ещё выходной сигнал находится в допустимых пределах;
  • Время срабатывания АРУ (дБ/с) — отражает скорость реакции АРУ на скачок входного сигнала. Данный параметр равен бесконечности (нулевое время срабатывания) для ограничителя сигнала.

Важным свойством системы АРУ является наличие выхода, показывающего уровень входного сигнала (невозможно сделать для ограничителя).

Смещение ламп выходного каскада

Напряжение смещения влияет на характер звука, правильную работу и срок службы ламп выходного каскада. Опытный пользователь может сам отрегулировать фиксированное напряжение смещения при замене ламп. В противном случае нужно доверить это дело специалисту. Рэндалл Смит из “Mesa Boogie” говорит: «за 12 лет активного ремонта гитарных усилителей одной из наиболее частых проблем является неправильная настройка Bias, либо его отклонение из-за вибрации».

Фиксированное смещение лампы Автоматическое смещение лампы

Что такое смещение (bias)

Лампа усиливает сигнал, поданный на её управляющую сетку. Она будет делать это при наличии на сетке более отрицательного напряжения относительно катода. Тем самым регулируется количество электронов, которые проникают сквозь сетку на пути от катода к аноду. Меняя напряжение на сетке, мы можем менять напряжение на выходе (аноде). Существует две разновидности смещения:

  • Резистор между минусом источника питания и сеткой лампы сам устанавливает оптимальное отрицательное напряжение. Сопротивление этого резистора подбирается индивидуально для каждой конкретной лампы. При автоматическом смещении на катодном резисторе рассеивается относительно большая мощность, которая могла быть отдана в нагрузку. В качестве компенсации приходится увеличивать напряжение питания выходных ламп, что приводит к снижению КПД.
  • Фиксированное смещение подразумевает одно и то же отрицательное напряжение, которое настраивается переменным резистором на определенную величину. Такой тип позволяет получить более высокую мощность в ущерб качеству звука. Напряжение может формироваться через отдельный выпрямитель и обмотку силового трансформатора, поэтому практически не зависит от величины анодного напряжения, как в случае с автосмещением.

Push-Pull усилители

Двухтактный выходной каскад, также известный как класс «В» или «АВ», способен обеспечивать достаточно серьезную выходную мощность, в отличие от однотакта (single ended). В таком каскаде одна лампа (или несколько включенных параллельно) используется для восходящей части волны, а другая – для нисходящей части исходного сигнала. Очень похоже на качели, проталкивающие ток в акустическую систему через выходной трансформатор. Для достижения максимальной эффективности фиксированный bias сделан крайне отрицательным, вплоть до того момента, когда лампы могут усиливать только положительную полуволну – это известно как смещение вблизи отсечки.

В чистом классе «В» проблемы начинаются при переходе сигнала через нулевое значение. Лампы по своей природе имеют нелинейную характеристику – в наибольшей степени это проявляется в драйверном каскаде. Здесь появляются искажения типа «ступенька» (crossover distortion), возникающие при переходе сигнала через «ноль». Степень отклонения от линейной зависимости характеризуются общим коэффициентом гармоник (Кг).

Лучший способ противостоять таким искажениям – сделать одновременное усиление в области нулевого значения. Другими словами, отрицательная полуволна начнет усиливаться в тот момент, когда сигнал находится в верхней части амплитуды. То же самое должно происходить и в обратном направлении. Чем идеальнее соблюдение этого правила, тем больше усилитель приближается к классу «АВ» и «А».

Читайте так же:
Таблица для регулировки клапанов рейкой

Настройка смещения ламп выходного каскада

Как убедиться в правильной настройке смещения? Нужно измерить напряжение на катодном резисторе, подсоединив плюсовой щуп мультиметра к катоду лампы, а минусовой – на общий провод (минус питания). Для 6П14П это значение равно -6,5 В, для 6П3С равно -14 В. В схеме с фиксированным смещением можно отрегулировать нужное отрицательное напряжение с помощью переменного резистора или подбором номинала постоянного сопротивления. Таким образом, устанавливается ток покоя оконечного каскада.

При недостаточном напряжении смещения выходные лампы будут сильнее нагреваться и быстрее придут в негодность. От блока питания потребуется большая мощность, чем требуется.

При чрезмерно отрицательном напряжении смещения нелинейные искажения типа «ступенька» станут отчетливо слышны. Это также может повредить лампы тем самым образом, когда они используются в течение длительного времени без перерыва.

Особенно важен одинаковый ток покоя в лампах драйвера и оконечника. В противном случае на выходном трансформаторе будет дисбаланс по постоянному току. И усилитель не будет отдавать всю полезную мощность в нагрузку.

Ламповый усилитель 100 Вт на 6П3С

Возраст лампы и отклонения в смещении

Как известно, все лампы в процессе эксплуатации изнашиваются, начиная звучать блекло. Важным фактором в длительности эксплуатации является пропускная способность, или трансдуктивность. Она определяет силу тока, которую проводит лампа при заданном напряжении на управляющей сетке. Старые лампы со временем проводят меньший ток, нежели новые. Естественно, в процессе эксплуатации смещение может выходить из заданных значений, поскольку гитарные комбики подвержены также и механическим вибрациям.

Вот почему ламповые усилители нуждаются в небольшой профилактике хотя бы раз в 3-5 лет, и уж тем более после замены ламп.

3. Классификация транзисторов по мощности и по частоте.

В зависимости от максимальной мощности рассеивания биполярные транзисторы делятся на:

1. малой мощности — Pmax ≤ 0,3 Вт;
2. средней мощности — 0,3 1,5 Вт.

В зависимости от значения граничной частоты коэффициента передачи тока на транзисторы:

1. низкой частоты – fгр ≤ 3 МГц;
2. средней частоты – 3 МГц 300 МГц.

Ну вот и все.
Теперь у Вас не должно возникнуть вопросов о работе биполярного транзистора в режиме усиления.
Удачи!

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Е. Айсберг — Транзистор. Это очень просто! 1964г.

Динамическая обработка звука

Динамическая обработка представляет собой процесс изменения динамического диапазона сигнала – разницы между самым громким и самым тихим участком аудиосигнала.

Динамическая обработка в современном продакшене является неотъемлемой частью процесса сведения. Если проанализировать популярные композиции в танцевальной стилистике, то можно отметить, что они звучат очень «громко» (правильнее сказать плотно). Такой эффект «громкого» звука – это следствие сужения динамического диапазона сигнала и последующее повышение уровня сигнала (увеличение среднеквадратического значение уровня сигнала – RMS).

Динамический диапазон

RMS (root mean square) – среднеквадратическое(средневзвешенное) значение.

RMS современных треков достигает уровня в -3 дБ. Это, на мой взгляд, чересчур, но сейчас не об этом.

Динамическая обработка в большей степени применяется для упрощения процесса изменения громкости различных участков сигнала. Такую обработку также можно выполнить, используя автоматизацию громкости. Однако в некоторых случаях это занимает слишком много времени. Поэтому не является целесообразным.

Автоматизация громкости

Все процессоры динамической обработки, в той или иной мере, применяются для изменения уровня сигнала на определённых участках аудиосигнала.

Основными устройствами динамической обработки звука являются:

Рассмотрим подробнее каждый прибор.

Компрессор

Это самый часто используемый прибор динамической обработки. Он предназначен в основном для сужения динамического диапазона сигнала. Однако его применение этим не ограничивается. Часто компрессор применяется для выделения атаки сигнала, сайдчейн компрессии, склеивания инструментов в группах, а также для создания необычных эффектов.

Классический компрессор имеет следующие параметры:

Threshold – порог срабатывания (дБ). Если обрабатываемый сигнал превысит этот порог, то компрессор включится, и будет обрабатывать сигнал в соответствии с настройками.

Ratio – коэффициент компрессии или степень компрессии (относительная величина: 2:1; 3:1; 4:1 и т.п.). Показывает во сколько раз будет сжат сигнал, который превышает порог срабатывания. Например, если уровень сигнала — 4 дБ, порог срабатывания — 8 дБ (8-4=4 дБ), степень компрессии 2:1, то разница между уровнем сигнала и порогом срабатывания будет сжата в два раза (4:2=2 дБ). Таким образом, после компрессии уровень сигнала уменьшится на 2 дБ и будет составлять 6 дБ.

Читайте так же:
Для регулировки зажигания инжекторов

Attack – время срабатывания (мс). Указывает компрессору как быстро после превышения порога срабатывания необходимо сжать сигнал. Это время от момента превышения порога срабатывания до момента максимальной компрессии («плавность начала компрессии» если так можно выразится). Можно провести аналогию атаки огибающей и атаки компрессора.

Release – время восстановления (мс). Указывает компрессору, как быстро необходимо перейти в режим ожидания (выключится). Этот параметр отображает плавность выключения компрессора (по аналогии с параметром восстановления огибающей).

Make Up (Gain) – компенсация громкости на выходе компрессора (дБ).

После компрессии уровень сигнала снижается (в вышеприведённом примере на 2 дБ) в соответствии с настройками компрессора. Параметр Make Up позволяет скомпенсировать потерянную громкость.

Нужно отметить, что компрессор сжимает сигнал превышающий порог срабатывания (уменьшая его), при этом самые тихие участки (не превышающие порог) остаются без изменений. После компенсации громкости максимальный уровень возвращается на своё прежнее значение, при этом повышается уровень и на всех остальных участках сигнала (тихие участки становятся громче). Такая процедура сужает динамический диапазон сигнала. Это позволяет сделать аудиосигнал более читаемым в миксе.

Компрессоры различаются по алгоритму работы и функциональности. Также существуют многополосные компрессоры, позволяющие отдельно компрессировать различные частотные диапазоны (полосы) сигнала. В таких компрессорах для частотного разделения сигнала используется кроссовер.

iZotope Ozone 7 Dynamics

Многополосный компрессор iZotope Ozone 7 Dynamics

Для большего понимания предлагаю посмотреть видео «Что такое компрессия звука?».

О том, как настаивать и использовать компрессор читайте в статьях:

Транзиент шейпер

Этот прибор представляет собой урезанную версию компрессора, предназначенную для работы с временными параметрами сигнала (Attack и Release). Классический транзиент шейпер позволяет увеличивать уровень атаки и восстановления сигнала в соответствии с выбранной кривой.

Ярким представителем этого класса устройств является плагин Transient Shaper 2 от компании Schaack Audio Technologies.

Transient Shaper 2

Transient Shaper 2

Чаще всего транзиент шейпер используется для усиления атаки.

Лимитер и максимайзер

Лимитер представляет собой компрессор со степенью компрессии ∞:1. Задачей лимитера является ограничение сигнала превышающего установленный порог. Этот прибор имеет те же параметры, что и компрессор (Threshold, Attack, Release и Gain).

Fruity Limiter

Максимайзер – это лимитер с автоматической компенсацией громкости. Это устройство позволяет повысить уровень сигнала на мастере, при этом избегая клиппирования.

Waves L3 UltraMaximazer

Это прибор, который позволяет избавиться от различных шумов. Гейт (gate – с англ. ворота) пропускает сигнал, который превышает порог Threshold и не пропускает сигнал ниже этого порога.

Гейт часто используется при обработке вокала или других инструментов записанных вживую.

Основными параметрами гейта, являются:

Threshold – порог ограничения (дБ). Если сигнал опускается ниже этого порога, то гейт не пропускает этот сигнал (сигнал подавляется). Все что выше порога остаётся без изменений.

Ratio – коэффициент подавления (относительная величина). Показывает насколько сильно сигнал будет подавлен.

Attack – время срабатывания гейт (мс). Насколько быстро (плавно) будет подавлен сигнал.

Release – время восстановления (мс). Насколько быстро (плавно) будет восстановлен сигнал или как скоро полностью выключится гейт после того, как уровень сигнала превысит порог ограничения.

Одним из лучших гейтов на сегодняшний день является FabFilter Pro-G.

FabFilter Pro-G

Экспандер

Это прибор, выполняющий противоположные компрессору функции. Он позволяет увеличить динамический диапазон сигнала (разницу между самым громким и самым тихим участком).

Существует два вида экспандеров – понижающий и повышающий.

Первый понижает уровень сигнала ниже установленного порога, а второй повышает уровень сигнала выше заданного порога.

Основные параметры понижающего экспандера:

Threshold – порог срабатывания (дБ). Если уровень сигнала будет ниже порога срабатывания, то экспандер включится и ослабит сигнал, не превышающий этот порог в соответствии с настройками.

Ratio – коэффициент ослабления (относительная величина). Показывает, во сколько раз ослабится сигнал, не превышающий порог срабатывания.

Attack и Release – время атаки и время восстановления (мс) (аналогично компрессору).

Основные параметры повышающего экспандера:

Threshold – порог срабатывания (дБ). Если уровень сигнала будет выше порога срабатывания, то экспандер включится и усилит сигнал, превышающий этот порог в соответствии с настройками.

Ratio – коэффициент ослабления (относительная величина). Показывает, во сколько раз усилится сигнал, превышающий порог срабатывания.

Читайте так же:
Регулировка капота на хантере

Attack и Release – время атаки и время восстановления (мс)(аналогично компрессору).

В качестве повышающего экспандера может быть использован компрессор Waves С1 comp с коэффициентом компрессии от 0,5:1 до 0,99:1.

Экспандер

Деэссер и депоппер

Деэссер – это прибор, который позволяет автоматически устранять шипящие звуки в вокальных партиях в соответствии с настройками.

Для того, чтобы не исправлять шипящие в вокальной партии с помощью автоматизации часто прибегают к помощи деэссера. Однако необходимо отметить, что автоматизация всё же является более приемлемым вариантом (хоть и занимает больше времени).

Депоппер – это прибор, который призван подавлять бубнящие звуки в вокале.

По сути деэссер и депоппер работают по одному и тому же принципу.

Одним из самых популярных деэссеров является FabFilter Pro-DS.

FabFilter-Pro-DS

Ещё одним вариантом устранения огрехов вокалиста (шипящие и бубнящие) является использование динамической эквализации.

О том, что это такое читайте в статье «Что такое динамическая эквализация?».

Как я уже говорил, все приборы динамической обработки призваны автоматизировать и ускорить процесс обработки сигнала (выравнивание динамики, выделение атаки, устранение шумов и т.п.).

При сведении композиции динамическая обработка является необходимым этапом, даже если она выполнена без использования вышеописанных устройств.

Как работает неинвертирующий усилитель на ОУ на примере

Это также можно легко проверить с помощью программы Proteus. Схема будет выглядеть вот так:

Неинвертирующий усилитель на ОУ

Давайте рассчитаем коэффициент усиления KU. KU = 1+R2/R1=1+90к/10к=10. Значит, наш усилитель должен ровно в 10 раз увеличивать входной сигнал. Давайте проверим, так ли это. Подаем на неинвертирующий вход синусоиду с частотой в 1кГц и смотрим, что имеем на выходе. Для этого нам потребуется виртуальный осциллограф:

неинвертирующий усилитель принцип работы

Входной сигнал — это желтая осциллограмма, а выходной сигнал — это розовая осциллограмма:

неинвертирующий усилитель осциллограмма

Как вы видите, входной сигнал усилился ровно в 10 раз. Фаза выходного сигнала осталась такой же. Поэтому такой усилитель называют НЕинвертирующим.

Но, как говорится, есть одно «НО». На самом же деле в реальном ОУ имеются конструктивные недостатки. Так как Proteus старается эмулировать компоненты, приближенные к реальным, давайте рассмотрим амплитудно-частотную характеристику (АЧХ), а также фазо-частотную характеристику (ФЧХ) нашего операционника LM358.

Настройка репитера

В этом случае вы обратитесь либо в техподдержку компании-изготовителя репитера, либо к установщикам усилителей сотовой связи.

Для экономии времени и денежных средств пользователь старается сам настроить репитер, но не всегда это получается, так как должной инструкции по установке репитера не было найдено. Тогда будут наблоюдаться помехи или перебои вызовов на территории репитера.

В данной статье рассмотрим общий алгоритм настройки, общие принципы, на которые нужно ориентироваться при установке оборудования.

1) Включаем репитер в сеть (при условии, что репитер подключен к внутренней и внешней антеннам).

Далее определяемся с видом/типом репитера, и переходим к настройкам различных, но типовых усилителей.

Репитер без экрана

В зависимости от ситуации, индикатор Alarm может мигать или менять цвет. Это является первым признаком неправильной настройки репитера.

В штатном режиме светодиод должен быть зеленым или не гореть (особенно красным).

Чтобы избавиться от неполадки, вам необходимо найти правильные уровни усиления сотового сигнала.

На примере репитера PicoCell серии SXB (где тоже отсутствует экран), Вы увидите переключатели аттенюатора. В данном случае, они делятся на переключатели DL и UL.

Переключатели в стороне DL должны совпадать с переключателями UL, т.е. быть зеркально установлены. Если в стороне DL включена атеннюация 2 dB, в стороне UL также должна быть включена аттенюация на 2 dB.

Этим достигается «равновесие» входящего и исходящего сигнала. При отсутствии этого равновесия у Вас будет гореть индикатор Alarm.

Настройка репитера SXB PRO

Самые дешевые репитеры могут иметь настройку с помощью винтообразных переключателей (например, PicoCell 1800 SXB). У него на задней крышке, со стороны крепежа, имеется регулировочный винт. Подкручивая его, Вы сможете усилить и снизить мощность репитера.

Иногда репитеры имеют два регулировочных «винта» (например, PicoCell 1800 SX20). Один регулирует уровень DL, другой UL. Мощность ретранслятора будет изменяться на экране или световыми индикаторами.

Настройка репитеров PicoCell

Репитер с экраном

Более дорогие и современные репитеры серий SX17 SX20 и SX23, как правило, поставляются c экраном, на котором отображена информация о усилении в режиме «Реального времени».

Читайте так же:
Как отрегулировать передние дисковые тормоза на велосипеде

Здесь «Alarm» может выводиться разными способами: сообщением на экране, индикатором, светодиодом.

Как правило, если репитер работает некорректно, первое, что можно посоветовать — снизить мощность усилителя. Скорее всего, это можно сделать в меню репитера «Настройка/Усиление».

Вместо переключателей, там будут цифры (тоже в dB). Принцип тот же самый — меняя цифры в UL, не забудьте изменить и DL.

Ниже показан рабочий режим репитеров PicoCell серии SX. В качестве индикаторов здесь выступают светодиоды и индикаторы, расположенные внизу экрана (ISO, ALC, OFF). На других репитерах могут быть другие названия и методы индикации.

SX20 SX17 SX23 настройка репитера

Если репитер работает исправно — индикаторы не горят и ошибок нет, то возможно, Вы выбрали репитер не того диапазона. Например, когда купили репитер 2000 диапазона, а у Вас на территории есть только диапазон 900 МГц. В этом случае поможет только замена репитера.

Бывают более старые версии усилителей сотовой связи, оборудованные экраном. Смысл настройки подобных репитеров такой же, как описан выше. С помощью меню, необходимо установить усиление UL и DL. Подобные настройки могут иметь такие репитеры, как PicoCell серии V1A

Настройка репитеров PicoCell SXA,SXL,SXB и др.

Регулировка ретранслятора SXL,SXP,SXT,SXV, SXA с дисплеем

Включите питание ретранслятора. В меню НАСТРОЙКА/ПИТАНИЕ, проверьте, что оба канала ретранслятора включены.

В меню НАСТРОЙКА /УСИЛЕНИЕ установите усиление в канале DN «станция – телефон», достаточное для выхода ретранслятора на максимальную выходную мощность, но ниже срабатывания системы автоматической регулировки мощности (АРМ), при этом появляется значок А, так как в этом режиме усиление в канале «станция – телефон» автоматически снижается. Допускается кратковременное срабатывание АРМ характерное изменяющемуся трафику базовых станций сотовых систем. Если уровня сигнала от базовой станции не достаточно при максимальном усилении, то следует скорректировать направление наружной антенны по максимуму сигналов базовой станций нужного оператора связи.

Установите усиление в канале UP «телефон – станция», близкое к значению установленному в канале «станция – телефон». В GSM системе допускается разбаланс усилений в каналах не более 6 дБ, именно по этой причине не рекомендуется доводить усиление в канале «станция – телефон» до срабатывания АРМ, т.к. в этом случае становится неизвестно значение усиления.

Убедитесь в отсутствии самовозбуждения ретранслятора. Признаком самовозбуждения являться наличие постоянного уровня выходной мощности в канале «телефон–станция» при отсутствии работающих телефонов абонентов. Если согласно измерениям или расчетам известно, что уровня сигналов от базовой станции не достаточно для того, чтобы ретранслятор «вышел на полную мощность», а индикатор ретранслятора показывает полную шкалу, и при этом появляется значок – Р , то это однозначно указывает на самовозбуждение.

Удобно пользоваться следующим методом: при увеличении усиления на 1 дБ уровень выходной мощности также должен увеличиться на 1 дБм, если происходит скачок мощности на 2 дБм и более, то это означает наступление самовозбуждения. Для устойчивой работы ретранслятора рекомендуется установить усиление на 2–4 дБ ниже того значения, при котором происходит «скачок» мощности.

Измените ориентацию и взаимное расположение антенн. При правильной установке антенн и коэффициентов усиления не должен постоянно светиться значок Р.

Проверьте работу ретранслятора, используя сотовый телефон в инженерном режиме. При необходимости выполните окончательную ориентацию и установку антенн для обеспечения наилучших условий связи.

Настройка репитеров PicoCell SXA,SXL,SXB

Когда на экране не отображается шкала (ни слева, ни справа), а смена UL и DL не помогает, тогда два варианта:

1) Репитер не исправен (или его блок питания) — сгорела плата усиления

2) Проблема во входном сигнале — либо он слишком слабый или отсутствует, либо поврежден входной кабель.

Таблица преобразования из dBm в мВт.

преобразование dB в Вт

Совет 1. Проверьте чтобы UL и DL на репитере были одинаковыми.

Совет 2. Измените мощность усиления с помощью переключателей (лучше в сторону уменьшения), до момента отключения индикатора Alarm.

Совет 3. Если настроить репитер не получилось — выключите его из сети, и проконсультируйтесь со специалистами.

Репитеры для самостоятельной установки

Репитер PicoCell 5SX17 PRO

PicoCell 5SX17 — Универсальный и современный репитер для усиления сотовой связи всех актуальных диапазонов и всех сотовых операторов.

Усиление сотовой связи:GSM 3G 4G
Коэф. усиления: 65 дБ
Мощность репитера: 50 мВт
Разъем репитера: N-female.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector