Carsevolution.ru

КАРС Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выбор электродвигателя для промышленных применений

Выбор электродвигателя для промышленных применений

При выборе электродвигателя следует учитывать множество факторов, в том числе целевое назначение, требующиеся эксплуатационные и механические характеристики, а также предполагаемые внешние воздействия. Возможные варианты таковы: электродвигатель переменного тока, электродвигатель постоянного тока (рис. 1) или серводвигатель (шаговый электродвигатель). Конечный выбор в основном зависит от того, для какого промышленного изделия подбирается электродвигатель, и от наличия особых потребностей.

Рис. 1. Электродвигатели постоянного тока хорошо подходят для применения в изделиях с невысокой стоимостью, низкой частотой вращения ротора или постоянным крутящим моментом — например, таких, как этот ленточный транспортер

В зависимости от характера нагрузки это может быть электродвигатель с постоянной или переменной частотой вращения и мощностью. Крутящий момент и мощность определяются величиной нагрузки, необходимой частотой вращения, а также разгоном и торможением (особенно если они быстрые и/или частые). Кроме того, следует учитывать требования к регулированию частоты вращения и управлению положением ротора.

Устройство и принцип работы

Электродвигатели постоянного тока по конструкции подобны синхронным двигателям переменного тока, с разницей в типе тока. В простых демонстрационных моделях двигателя применяли один магнит и рамку с проходящим по ней током. Такое устройство рассматривалось в качестве простого примера. Современные двигатели являются совершенными сложными устройствами, способными развивать большую мощность.

Главной обмоткой двигателя служит якорь, на который подается питание через коллектор и щеточный механизм. Он совершает вращательное движение в магнитном поле, образованном полюсами статора (корпуса двигателя). Якорь изготавливается из нескольких обмоток, уложенных в его пазах, и закрепленных там специальным эпоксидным составом.

Статор может состоять из обмоток возбуждения или из постоянных магнитов. В маломощных двигателях используют постоянные магниты, а в двигателях с повышенной мощностью статор снабжен обмотками возбуждения. Статор с торцов закрыт крышками со встроенными в них подшипниками, служащими для вращения вала якоря. На одном конце этого вала закреплен охлаждающий вентилятор, который создает напор воздуха и прогоняет его по внутренней части двигателя во время работы.

Elektrodvigateli postoiannogo toka ustroistvo

Принцип действия такого двигателя основывается на законе Ампера. При размещении проволочной рамки в магнитном поле, она будет вращаться. Проходящий по ней ток создает вокруг себя магнитное поле, взаимодействующее с внешним магнитным полем, что приводит к вращению рамки. В современной конструкции мотора роль рамки играет якорь с обмотками. На них подается ток, в результате вокруг якоря создается магнитное поле, которое приводит его во вращательное движение.

Для поочередной подачи тока на обмотки якоря применяются специальные щетки из сплава графита и меди.

Выводы обмоток якоря объединены в один узел, называемый коллектором, выполненным в виде кольца из ламелей, закрепленных на валу якоря. При вращении вала щетки по очереди подают питание на обмотки якоря через ламели коллектора. В результате вал двигателя вращается с равномерной скоростью. Чем больше обмоток имеет якорь, тем равномернее будет работать двигатель.

Читайте так же:
С какого цилиндра начинать регулировку клапанов на мотоцикле урал

Щеточный узел является наиболее уязвимым механизмом в конструкции двигателя. Во время работы медно-графитовые щетки притираются к коллектору, повторяя его форму, и с постоянным усилием прижимаются к нему. В процессе эксплуатации щетки изнашиваются, а токопроводящая пыль, являющаяся продуктом этого износа, оседает на деталях двигателя. Эту пыль необходимо периодически удалять. Обычно удаление пыли выполняют воздухом под большим давлением.

Щетки требуют периодического их перемещения в пазах и продувки воздухом, так как от накопившейся пыли они могут застрять в направляющих пазах. Это приведет к зависанию щеток над коллектором и нарушению работы двигателя. Щетки периодически требуют замены из-за их износа. В месте контакта коллектора со щетками также происходит износ коллектора. Поэтому при износе якорь снимают и на токарном станке протачивают коллектор. После проточки коллектора изоляция, находящаяся между ламелями коллектора стачивается на небольшую глубину, чтобы она не разрушала щетки, так как ее прочность значительно превышает прочность щеток.

Виды
Электродвигатели постоянного тока разделяют по характеру возбуждения:
Независимое возбуждение

При таком характере возбуждения обмотка подключается к внешнему источнику питания. При этом параметры двигателя аналогичны двигателю на постоянных магнитах. Обороты вращения настраиваются сопротивлением обмоток якоря. Скорость регулируют специальным регулировочным реостатом, включенным в цепь обмоток возбуждения. При значительном снижении сопротивления или при обрыве цепи ток якоря повышается до опасных величин.

Elektrodvigatel p.t. nezavisimoe vozbuzhdenie

Электродвигатели с независимым возбуждением запрещается запускать без нагрузки или с небольшой нагрузкой, так как его скорость резко возрастет, и двигатель выйдет из строя.

Параллельное возбуждение

Обмотки возбуждения и ротора соединяются параллельно с одним источником тока. При такой схеме ток обмотки возбуждения значительно ниже тока ротора. Параметры двигателей становятся слишком жесткими, их можно применять для привода вентиляторов и станков.

Elektrodvigatel p.t. parallelnoe vozbuzhdenie

Регулировка оборотов двигателя обеспечивается реостатом в последовательной цепи с обмотками возбуждения или в цепи ротора.

Последовательное возбуждение

В этом случае возбуждающая обмотка подключается последовательно с якорем, в результате чего по этим обмоткам проходит одинаковый ток. Обороты вращения такого мотора зависят от его нагрузки. Двигатель нельзя запускать на холостом ходу без нагрузки. Однако такой двигатель обладает приличными пусковыми параметрами, поэтому подобная схема используется в работе тяжелого электротранспорта.

Читайте так же:
Как регулировать зажигание на муравье
Elektrodvigatel p.t. posledovatelnoe vozbuzhdenie
Смешанное возбуждение

Такая схема предусматривает применение двух обмоток возбуждения, находящихся парами на каждом полюсе двигателя. Эти обмотки можно соединять двумя способами: с суммированием потоков, либо с их вычитанием. В итоге электродвигатель может обладать такими же характеристиками, как у двигателей с параллельным или последовательным возбуждением.

Elektrodvigatel p.t. smeshannoe vozbuzhdenie

Чтобы заставить двигатель вращаться в другую сторону, на одной из обмоток изменяют полярность. Для управления скоростью вращения мотора и его запуском используют ступенчатое переключение разных резисторов.

Особенности эксплуатации

Электродвигатели постоянного тока отличаются экологичностью и надежностью. Их главным отличием от двигателей переменного тока является возможность регулировки оборотов вращения в большом диапазоне.

Elektrodvigateli postoiannogo toka skhema

Такие электродвигатели постоянного тока можно также применять в качестве генератора. Изменив направление тока в обмотке возбуждения или в якоре, можно изменять направление вращения двигателя. Регулировка оборотов вала двигателя осуществляется с помощью переменного резистора. В двигателях с последовательной схемой возбуждения это сопротивление расположено в цепи якоря и позволяет уменьшить скорость вращения в 2-3 раза.

Этот вариант подходит для механизмов с длительным временем простоя, так как при работе реостат сильно нагревается. Повышение оборотов создается путем включения в цепь возбуждающей обмотки реостата.

Для моторов с параллельной схемой возбуждения в цепи якоря также применяются реостаты для уменьшения оборотов в два раза. Если в цепь обмотки возбуждения подключить сопротивление, то это позволит повышать обороты до 4 раз.

Применение реостата связано с выделением тепла. Поэтому в современных конструкциях двигателей реостаты заменяют электронными элементами, управляющими скоростью без сильного нагревания.

На коэффициент полезного действия мотора, работающего на постоянном токе, влияет его мощность. Слабые электродвигатели постоянного тока обладают малой эффективностью, и их КПД около 40%, в то время, как электродвигатели мощностью 1 МВт могут обладать коэффициентом полезного действия до 96%.

Пуск с помощью пускового реостата или пусковых сопротивлений

Рисунок 1. Схема пуска двигателя параллельного возбуждения с помощью пускового реостата (а) и пусковых сопротивлений (б)

Для двигателей с параллельным возбуждением самым распространенным является пуск с помощью пускового реостата или пусковых сопротивлений (рисунок 1).
При этом вместо выражения (5), в статье «Общие сведения о двигателях постоянного тока» имеем

(2)

а в начальный момент пуска, при n = 0,

(3)

где Rп – сопротивление пускового реостата, или пусковое сопротивление. Значение Rп подбирается так, чтобы в начальный момент пуска было Iа = (1,4 – 1,7) Iн [в малых машинах до (2,0 – 2,5) Iн].

Рассмотрим подробнее пуск двигателя параллельного возбуждения с помощью реостата (рисунок 1, а).

Читайте так же:
Как отрегулировать холостой ход на волге инжектор

Перед пуском (t < 0) подвижный контакт П пускового реостата стоит на холостом контакте и цепь двигателя разомкнута. В начальный момент пуска (t = 0) подвижный контакт П с помощью рукоятки переводится на контакт 1, и через якорь пойдет ток Iа, определяемый равенством (3). Цепь обмотки возбуждения ОВ подключается к неподвижной контактной дуге д, по которой скользит контакт П, чтобы во время пуска цепь возбуждения все время была под полным напряжением. Это необходимо для того, чтобы iв и Фδ при пуске были максимальными и постоянными, так как при этом, согласно выражению (8), в статье «Общие сведения о двигателях постоянного тока», при данных значениях Iа развивается наибольший момент М. С этой же целью регулировочный реостат возбуждения ставится при пуске в положение Rп.в = 0.

При положении контакта П пускового реостата на контакте 1 (t = 0) возникают токи Iа и iв, а так же момент М, и если М больше Мст, то двигатель придет во вращение и скорость n будет расти со значения n = 0 (рисунок 2). При этом в якоре будет индуктироваться электродвижущая сила (э. д. с.) Eаn и, согласно выражениям (2) и (8), представленных в статье «Общие сведения о двигателях постоянного тока», Iа и M, а также скорость нарастания n будут уменьшаться. Изменение этих величин при Mст = const происходит по экспоненциальному закону.

Когда Iа достигнет значения Iа мин = (1,1 – 1,3) Iн, контакт П пускового реостата переведется на контакт 2. Вследствие уменьшения Rп ток Iа ввиду малой индуктивности цепи якоря почти мгновенно возрастет, M также увеличится, n будет расти быстрее и в результате увеличения Eа значения Iа и M снова будут уменьшаться (рисунок 2). Подобным же образом развивается процесс пуска при последовательном переключении реостата в положения 3, 4 и 5, после чего двигатель достигнет установившегося режима работы со значениями Iа и n, определяемыми условием M = Mст [смотрите равенства (8) и (9), в статье «Общие сведения о двигателях постоянного тока»].

При пуске на холостом ходу Mст = M. Ток Iа = Iа0 в этом случае мал и составляет обычно 3 – 8 % от Iн.

Заштрихованные на рисунке 2 ординаты представляют собой, согласно выражению (2), представленного в статье «Общие сведения о двигателях постоянного тока», значения избыточного, или динамического, момента

под воздействием которого происходит увеличение n.

Число ступеней пускового реостата и значения их сопротивлений рассчитываются таким образом, чтобы при надлежащих интервалах времени переключение ступеней максимальные и минимальные значения Iа на всех ступенях получилось одинаковыми.

По условиям нагрева ступени реостата рассчитываются на кратковременную работу под током.

Читайте так же:
Как отрегулировать форсунки на крузере

Остановка двигателя производится путем его отключения от сети с помощью рубильника или другого выключателя. Схема рисунка 1 составлена так, чтобы при отключении двигателя цепь обмотки возбуждения не размыкалась, а оставалась замкнутой через якорь. При этом ток в обмотке возбуждения после отключения двигателя уменьшается до нуля не мгновенно, а с достаточно большой постоянной времени. Благодаря этому предотвращается индуктирование в обмотке возбуждения большой э. д. с. самоиндукции, которая может повредить изоляцию этой обмотки.

Применяются также несколько видоизмененные по сравнению с рисунком 1, а схемы пусковых реостатов, без контактной дуги д. Конец цепи возбуждения при этом можно присоединить, например, к контакту 2, и при работе двигателя последовательно с обмоткой возбуждения будут включены последние ступени реостата. Поскольку их сопротивление по сравнению с Rв = rв + Rр.в мало, то это не оказывает большого влияния на работу двигателя.

Автоматизировать переключение пускового реостата неудобно. Поэтому в автоматизированных установках вместо пускового реостата используют пусковые сопротивления (рисунок 1, б), которые поочередно шунтируются контактами К1, К2, К3 автоматически работающих контакторов. Для упрощения схемы и уменьшения количества аппаратов число ступеней принимается минимальным (у двигателей малой мощности обычно 1 – 2 ступени).

Ни в коем случае нельзя допускать разрыва цепи параллельного возбуждения.

В этом случае поток возбуждения исчезает ни сразу, а поддерживается индуктируемыми в ярме вихревыми токами. Однако этот поток будет быстро уменьшаться и скорость n, согласно выражению (7), представленного в статье «Общие сведения о двигателях постоянного тока», будет сильно увеличиваться («разнос» двигателя). При этом [смотрите равенство 8, в статье «Общие сведения о двигателях постоянного тока»] ток якоря значительно возрастет и возникнет круговой огонь, вследствие чего возможно повреждение машины, и поэтому, в частности, в цепях возбуждения не ставят предохранителей и выключателей.

Факторы влияющие на экономический эффект

Наиболее очевидный экономический эффект при использовании преобразователей частоты может быть достигнут за счёт экономии электроэнергии. Но не стоит так же забывать о других факторах экономии:

  • Плавный старт позволяет снизить механические пусковые нагрузки. Это прямой выход на уменьшение износа и увеличение срока службы оборудования;
  • Плавный старт и останов насосов позволяет устранить гидроудары в системе;
  • Более низкая частота вращения двигателя приводит к увеличению ресурса установки. Снижается шумность;
  • Отсутствие 4-8 кратных пусковых токов при старте позволяет снизить установленную (максимальную) мощность, упростить систему защиты от перегрузок и короткого замыкания;
  • Включение насоса в контур автоматического регулирования позволяет поддерживать заданные параметры давления расхода и др. без участия оператора или дистанционно;
  • Точное поддержание давления в системе позволяет снизить максимальное давление в трубопроводах, а значит, и уменьшить вероятность их разрывов. Снижение давления даёт дополнительную экономию энергии и снижение потерь на утечки;
Читайте так же:
Как отрегулировать полуавтомат на юпитере

Все эти факторы сильно зависят от конкретной насосной или вентиляторной установки. Экономический эффект должен рассчитываться индивидуально для каждой установки. Замена электрических двигателей на новые, с более высоким КПД, может принести положительный экономический эффект. Даже при изменении КПД на 1-2% замена может окупиться за несколько лет. Особенно актуально проводить расчёты энергосбережения при установке новых двигателей.

Приближенный расчёт экономии энергии можно выполнить зная параметры электрического двигателя, насоса и требуемые выходные параметры:

  • давление,
  • расход.

Расчёт экономического эффекта от других факторов затруднён, так как зависит от конкретной насосной или вентиляторной установки. Но эффект от прочих факторов в некоторых случаях может превысить эффект от экономии энергии. Иногда, в случае ошибок при проектировании, или внесении изменений в систему после проектирования, рабочая точка насоса может оказаться так далеко от оптимальной, что экономически целесообразной окажется полная замена насосной установки.

ШИМ – регулятор оборотов вентилятора

ШИМ – управление очень часто применяется для управления двигателями постоянного тока, от детских электромобилей до регулировки оборотов кулера. В нашей схеме задающим звеном является таймер 555, который подключен по схеме генератора прямоугольных импульсов.

Управление производится с помощью мощного полевого транзистора, который в схеме не критичен и можно заменять в довольно широких пределах – IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48, IRF3205, IRL3710, IRL3705, IRF1404 и им подобные, в общем аналогов куча.

Регулировка оборотов вентилятора происходит довольно плавно, благодаря принципу ШИМ-управления, для увеличения/уменьшения оборотов просто нужно крутить переменный резистор.

Полевой транзистор нужно установить на теплоотвод, которым может являться и кузов автомобиля, но в таком случае транзистор изолируется от кузова с помощью слюдяной изолирующей прокладки.

Переменный резистор с номиналом 10 килоом с мощностью 0,5 ватт, можно 0,25-1 ватт. Номинал этого резистора (сопротивление) может отклоняться в ту или иную сторону в районе 50-70% – от 4,7кОм и вплоть до 20 кОм.

При желании схему можно собрать и поверхностным монтажом, хотя из-за минимального количества комплектующих элементов размеры самой схемы могут быть не более спичечного коробка.

Для удобного монтажа таймер желательно установить на специализированную пластмассовую петлю – для быстрой замены без использования припоя и паяльника.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector